industry

Hardware Security

Keynote panel on RISC-V Summit 2018: opportunities and challenges in security for open source hardware Complex systems tend to have bugs, so making it preparatory will make it more secure from attacks. But open source simple systems attract more eyes to review so that it becomes more and more secure over time. Military and government customers want secret projects. We need to change the way we design system

RISC-V Summit 2018

My notes on RISC-V Summit 2018 at Santa Clara Conventional Center This year’s summit has many more participants than the last one, which means RISC-V is getting a lot of momentum around the world. Although most of the speeches are technology-detail-less propaganda thing, we still can find something useful out of it. And more importantly, talking to the engineers manning the booth is very interesting and information rich. SiFive’s biz model Help customer to tape-out prototypes, and sell chips back to the customer.

SNUG Silicon Valley 2017 at Santa Clara Conventional Center

Day 1 Morning Paper from microsoft Microsoft has a IC design team? Apparently it does. Grey code: even when metastability happends, it falls to adjecent states, instead of unknow states, it’s acceptable in some cases. Data bus bridge (DBB) for low data throughput Async FIFO: more area, more complexity Panel: synthesis into the future The disruption in advanced nodes (10nm/7nm) Thermal: drives max freq; heating wires degreeds EM lifetime IoT: analog-digital co-design; physical/electical context-aware synthesis (the tool need to be aware of the block’s specific attributes, such as thermal/IR to avoid analog/digital interference.

Deep learning and Siri by Alex Acero @ Apple

AI and ML Artificial intellegence vs human intellegence The imitation game, eugen Goosman passed the Turing Test, 2014 Alpha Go, deepmind 2015 Introduction to deep learning Improve on task T with respect to performance metric P based on experience E Perceptron learning (one layer NN): a(i) = a(i-1) + n * {target - output} * A(i) 1974 multi-ayer perceptron with backpropagation training ​ deep learning is old tricks, more computing power, more data makes it possible and powerful Binary classification ​ TouchID, speaker verification, face verification, emal spam, motion detection, credit card fraud N-ary classifiction ​ MNIST (handwriting), speaker identification, word prediction (typing on iphone) Deep learning for speech (Deng, 2010)

Deep learning with GPUs in production

Start-up: python -> enterprise: C/Java/Scala, more engineers, faster Research: quick result and prototyping GPU? Data movement between GPU and CPU is important [ ] fast.ai: class (high school math) infrastructure: spark/flink scheduler problem distributed file system Problems to think about when running works on GPU clusters memory is relatively small throughput, jobs are more than matrix math resource provisioning: how many resource we need? GPU/CPU/RAM GPU allocation per job Python <-> Java overhead, defeats the points of GPUs

未来的AR应该是什么样子的?

今天去参加一个AI的meetup,碰到了一个连续创业者。他介绍了自己正在做的事情:“改变现有的输入方式,不应该是人给机器输入指令,而应该是机器预测人的需求并作出相应的动作。”,这才是机器的未来。同时他提到输出界面应该AR(增强现实)这种类型的,而不应该是一个显示屏幕。

Note of "Deep learning for image and video processing tutorial"

By Jon Shlens and George Toderici from Google Research @ 2017-01-20 Fri History Convolutional NN: old tech, why suddenly it works? Scale: 60M parameters At least 60M +1 data point to fit these parameters SIMD hardware (GPU) Domain transfer Use trained CNN (with large data set) on some other applications with limited data set CNN (convolutional neuron network)

智能用电的革命

一场涉及普通消费者的智能用电革命正在悄然发生。加州政府近年来努力推动这项能源节约革命,在近三年来取得了快速的进步,得到了能源公司和电器制造商的广泛支持。 Prosumer的概念 普通家庭以往是以单一的电力消费者出现的。但是近年来由于太阳能发电设备的推广力度不断加大,得到了大量消费者的欢迎和支持,催生了prosumer的概念,即producer + consumer。通过政府大力支持的贷款在自家屋顶安装太阳能板,并将发出的电力上网卖给电力公司,同时获得最低单价的用电费用。我的同事中就有不少安装了,或者正在考虑安装这样的设备,表明这样的project即使对于普通的三口或四口之家都是有利可图的。 智能用电 电网消费有峰有谷,这样的波动由于各个小区域的消费习惯、天气变化等密切相关,而且往往变化迅速,即以分钟为单位反复变化。但是电网负载波动对于电网设备而言是有害的,所以电力公司有非常强烈的意愿通过某些技术手段来消弭这样的波动。这样就提出了“智能用电”的概念,也就是通过对普通的电器进行联网和远程自动控制,来调节小区域内部的用电波动。这样不仅能降低电网设备的负载,也能够有效利用能源,所以对于电力公司和政府决策者而言都是大有益处的。对于普通消费者而言,积极参与“智能用电”项目能够获得的利益来自于电力公司和政府政策补贴。 举例说明,热水器和烘干机之类的设备是耗电量大户,但是往往对于时效性要求不是很高。如果能够加入特定的芯片进行联网控制其功率,取代恒定的大功率输出,就能够起到平衡电网负载波动的左右。代价可能仅仅是将原有的工作时间延长一些而已。再者就是目前越来越普及的电动车。对于普通使用者而言,充电时间远远大于使用时间。如果在足够的充电时间内自动选择电网负载最低的时段进行充电就能够获得最低的电价。 另外的小事 加州一些城市的商业区或者大型shopping center开始自行安装一些电动车充电桩。这些充电桩在非高峰期(周末或者节假日)是免费的。这样就吸引一些开电动车的顾客来充电和消费。

Bluetooth hub from Cassia Networks

今天的CES meetup是一个清华85级的学长来宣传他们自己公司的bluetooth hub,Cassia Networks。如果简单从名字上来看并没有什么高端的感觉,毕竟bluetooth和hub两个东西都不是什么稀奇的东西。但是它获得了2016年CES大会最佳产品奖项,可不是浪得虚名。

Observation of IC Industory: consolidation of future application

Recent consolidation progress is going so crazy, mostly because of the IC industry is becoming less and less profitable in every individual application fields. My perspective is that this is not just a consolidation of business itself, but a huge change of IC industry business model. There won’t be so many application fields that needs different IC chips, no matter it’s analog or digital. In analog world, more and more functionality will be replaced with digital as long as it can.